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Diffusion of an asymmetric object is characterized by its translational and rotational diffusion coefficients.
Until now, anisotropic diffusion studies have been based on ensemble averages. Here we present a theoretical
basis for the analysis of the trajectories of a single particle with anisotropic diffusion coefficients. We discuss
the relevance of this method for motion of biomolecules in the membrane of living cells.
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I. INTRODUCTION

Experimental studies of diffusion of particles have origi-
nally been carried out by using methods that measure the
average behavior of an entire population, such as dynamic
light scattering �1� or neutron scattering �2� in physics, or
fluorescence recovery after photobleaching �FRAP� �3� or
fluorescence correlation spectroscopy �FCS� �4� commonly
used in biology. For 20 years now, optical methods have
been developed for observing the motion of single particles
�5,6�. These methods, referred to as single particle tracking
�SPT� methods, consist in following the trajectory of a
marker attached to the diffusing molecule. Transport proper-
ties of the particle are then derived through a statistical
analysis of the trajectory, that includes, for instance, mea-
surement of the mean square displacement. SPT methods
thereby provide information not available through measure-
ments of the properties of large ensembles of particles.

Visualization of the diffusive behavior of single mem-
brane proteins in living cells has revealed that these mol-
ecules undergo a variety of motions, such as Brownian, con-
fined, or directed motion �6,7�. In this context, SPT is a
powerful tool for investigating the membrane structure and
the mechanisms responsible for these motions, which ulti-
mately influence reactions and interactions between biomol-
ecules �8�. Current analyses of trajectories allow the determi-
nation of the translational diffusion coefficient of a
symmetric molecule which undergoes isotropic diffusion.

However, in a two-dimensional isotropic homogeneous
environment, asymmetric molecules have two distinct trans-
lational diffusion coefficients, D� for diffusion along the lon-
gitudinal �or principal� axis of the particle and D� �D�

�D�� �9–11� along the transversal axis, and a rotational
diffusion coefficient, Dr �see Fig. 1�.

Since translational mobility is anisotropic, translational
and rotational diffusion are coupled. Qualitatively, the slower

the rotational diffusion is, the longer the particle will diffuse
in the same direction. As a consequence, trajectories of
asymmetric molecules differ from those of symmetric ones
as is illustrated by Fig. 2. A method of analyzing the motion
of single anisotropic molecules was developed by Perrin
�12,13�. Motivated by the recent development of SPT meth-
ods, we revisit this issue and focus on the trajectories of a
single anisotropic molecule. In this study, we propose a
method to deduce the translational and rotational diffusion
coefficients of an asymmetric object diffusing in a two-
dimensional space from the trajectory of its pointlike marker.

Our strategy has been to solve the evolution or Langevin
equation, which has allowed calculation of the exact analyti-
cal expressions of some statistical quantities, that character-
ize the geometry of the trajectory. This analytical method is
more powerful than those based on the characterization of
collective properties of an ensemble of particles: the latter
require knowledge of the probability distribution function,
which cannot be analytically determined �14–16�, and there-
fore are based on a perturbation approximation and are only
valid for weakly asymmetric particles �16�.

We present below the Langevin equation for a single
asymmetric object, then the statistical functions obtained
from ensembles of trajectories from which we can determine
the diffusion coefficients. In the last section we discuss
the relevance of this theoretical approach in a biological
context.
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FIG. 1. Definition of principal axes of the translational diffusion
coefficients, D� and D�, and the rotational diffusion coefficient, Dr,

around the center of diffusion �C; position X� �0��. The marker �aster-

isk, position X� � is at a distance d off the center along the longitu-
dinal direction.
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II. DYNAMICS OF DIFFUSING ANISOTROPIC OBJECT
ON A PLANE

D� and D� are the translational diffusion coefficients cor-
responding, respectively, to the longitudinal and transverse
axes of the object, and Dr is the rotational diffusion coeffi-
cient. For simplicity of the calculation, we first describe the
motion of the center of diffusion �CD�, which is the appro-

priate point to which translational and rotational quantities

must be referred �17�. We denote by X� t
�0�= �Xt

�0� ,Yt
�0�� the po-

sition of the CD of the diffusing object in the xy plane, and
by �t the angle made by the longitudinal axis and the posi-
tive x axis.

An extension of simple Brownian motion leads to the fol-
lowing coupled equations �18�:

d

dt
�Xt

�0�

Yt
�0� � = ��2D�cos2 �t + �2D�sin2 �t ��2D� − �2D��cos �t sin �t

��2D� − �2D��cos �t sin �t
�2D�sin2 �t + �2D�cos2 �t

���x,t

�y,t
� , �1�

where the angle �t evolves with

d�t

dt
= �2Dr�t. �2�

The random forces, ��x,t ,�y,t ,�t�, are assumed to be inde-
pendent correlation-free Gaussian random noises satisfying
	�x,t
= 	�y,t
= 	�t
=0, and 	�x,t��x,t
= 	�y,t��y,t
= 	�t��t

=��t�− t�. The Langevin equations can be solved analytically
since the evolution of �t is obtained by solving separately

�2� �see the Appendix A�. The position of the marker, X� t
= �Xt ,Yt�, is then obtained by

Xt = Xt
�0� + d cos �t, Yt = Yt

�0� + d sin �t, �3�

where d specifies the distance between the CD and the
marker along the longitudinal axis �generalization to other
positions of the marker is in principle feasible�. Our method
allows the determination of this distance d, while the exact
position of the marker is not known in classical SPT experi-
ments. We also note that the probability distribution function
still cannot be determined because it requires the average

over infinitely many moments �	X� t
, 	X� tX� t
, 	X� tX� tX� t
, etc.�.
In addition, the trajectories of the marker based on these

equations can readily be simulated. Simulations will allow
the estimation of the number of trajectories required for an
accurate assessment of the diffusion coefficients. Details of
the numerical method used are summarized in the Appendix
C.

We define the following characteristic length and time
scales,

� = �D� + D�

2Dr
�1/2

, � = �Dr�−1. �4�

The above Langevin equations can then be nondimensional-
ized �see the Appendix A�, where the anisotropy of the par-
ticle is characterized by a parameter �, which takes a value
between 0 and 1,

� = �D� − D��/�D� + D�� . �5�

Qualitatively, the particle does not appreciably change its
orientation until it diffuses along a distance � for time �.

Then, for large � �e.g., Ref. �19��, the particles which are
initially randomly oriented but spatially localized around the
origin will become oriented along the radial direction of their
displacements at short time. See �6� and Fig. 2.

FIG. 2. Examples of trajectories of symmetric �a� and asymmet-
ric �b� particles generated numerically. The marker on the particle is
placed at the center of diffusion �d=0�. The thick black symbols
represent the position of the particle at t=0 �at the origin �0,0��, t
=� /2, and t=�. The principal diffusion coefficients are chosen to be
�D� ,D� ,Dr�= �1,1 ,1 /2� �a� or �1,1 /10,1 /2� �b�, in the length units
of � and the time unit of �. Spatial coordinates are also represented
in units of �. The time step of calculation is chosen to be 	t
=� /200.
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III. STATISTICAL PROPERTIES OF TRAJECTORIES

From the solution of the Langevin equations, we are able
to calculate statistical quantities that characterize the motion
of the particle and thereby derive its diffusion coefficients.
The analytical expressions of those quantities are presented
in the Appendix B. In the analysis below we assume that the
origin is at the initial position of the CD, �X0

�0� ,Y0
�0��= �0,0�,

and that the initial angle, �0, is homogeneously distributed
over the entire angle, �0,2
�.

First, the mean square displacement �MSD� 	�X� t−X� 0�2
 as
a function of time is shown in Fig. 3.

The MSD depends on �, and if d is nonzero, of d and �. It
is, however, independent on the anisotropy parameter �. In
particular, if the marker is fixed at the CD of the particle, the
observed MSD is linear, even though the particle is asym-
metric. When the marker is not located at the CD, the MSD
exhibits an initial transient that allows the determination of
the characteristic time �. The initially greater slope of the
MSD is attributed to the displacement of the marker due to
the rotation of the particle �which is not negligible compared
to the initial small displacements due to translational diffu-
sion�, while the final slope represents only the translational
diffusion. The latter asymptote is offset from the origin by
2d2, which results from the uncorrelated rotational fluctua-
tions at the initial and final time, �0 and �t, respectively.

Then the anisotropy parameter � remains to be deter-
mined. Equation �1� shows that the spatial motion of the CD
is not a Markov process, in the sense that the probability of a
position at a future time, t1, is not completely specified by
the position at present time t0��t1�, but also depends on the
orientation of the particle at t0.

Such a correlation between the orientation of the displace-

ment of the particle, X� t
�0�, and that of the diffusing particle

itself, ût, can be expressed by the following function:

Ĉ�t� = 	�X� t
�0� · ût�2
 − 1

2 	�X� t
�0��2
 , �6�

where p� ·q� denotes the scalar product. This quantity is shown
in Fig. 4�a� for several values of �. The result can be inter-

preted as follows: For t�� the orientation ût has undergone
only small fluctuations with respect to the initial one, û0, and

the diffusive displacement, X� t
�0�, is more or less directed

along û0. The analytical expression of this quantity allows
determining the anisotropy parameter. However, classical
SPT experiments do not reveal the orientation of the diffus-
ing particle �see the Discussion�. We propose the following
function C�0, t , t�� to express the translation-rotation cou-

pling in terms of the observable displacement X� t only,

C�0,t,t�� = 2	��X� t − X� 0� · �X� t� − X� t��2
 − 	�X� t − X� 0�2�X� t� − X� t�2
 ,

�7�

with 0� t� t�. Up to time � this quantity gives an estima-
tion of the persistence of the diffusing direction, see Fig.
4�b�.

In principle, the translational and rotational diffusion co-
efficients and the off-center distance can be derived from the
MSD and the function C�0, t , t��. The 	�Xt�4
 has also been
shown to depend on the anisotropy parameter �, but with
such a subtle dependence that it does not allow deduction of

the diffusion coefficients. The analytical result of 	�X� t�4
 �see

the Appendix B� however, shows clearly that the position X� t
does not obey a Gaussian distribution since it does not sat-
isfy 	�Xt�4
=2	�Xt�2
2.

FIG. 3. Comparison of the simulated mean square displacements

�MSD�, 	�X� t−X� 0�2
 �d�0� using 600 trajectories �thick curve� with
the analytical result �dashed curve�. The dashed lines are the initial
and final asymptotes. Except for the off-center distance of the
marker chosen, d=2�, the result is completely scaled by the char-
acteristic length � and time �, irrespective to the anisotropy param-
eter, �. The time step of calculation is chosen to be 	t=� /20. FIG. 4. Cross correlation between the displacement and particle

orientation, Ĉ�t� �a�, and persistence of the diffusing direction
C�0, t ,2t� �b�. See �6� and �7�, respectively, for the definitions. The
functions are presented vs t /� for various values of the anisotropy
parameter, �=0 �bottom�, 1 /3 �middle�, 1 �top�. The off-center dis-
tance of the marker was chosen to be d=0. Analytical results
�dashed curves� are compared with the simulated data over 600
trajectories �thick curves�. In �b� the calculation is truncated at t
=0.4� since, with the present time step of calculation �	t=� /600�,
the accuracy becomes poor beyond this point �due mainly to the
fact that the function C�0, t ,2t� is a subtle difference between two
growing terms of t2�.
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IV. DISCUSSION

In this paper we have developed a theoretical approach
for two-dimensional diffusion of asymmetric objects in an
isotropic homogeneous environment. We have focused our
analysis on trajectories of a pointlike marker attached to a
single diffusing particle. In particular, we have shown how
the translation-rotation coupling can be uncovered using new
statistical functions obtainable from these trajectories. From
this analysis we have established a method to derive the dif-
fusion coefficients of an asymmetric particle from the trajec-
tory of a pointlike marker. We have shown that diffusion
anisotropy, �, cannot be approached using the MSD: the
MSD depends only on the characteristic time �= �Dr�−1, the
characteristic length �= ��D� +D�� / �2Dr��1/2, and the off-
center distance of the marker with respect to the center of
diffusion, d. Analyses of trajectories of diffusing membrane
proteins �obtained by SPT� are usually based on MSD mea-
surements only and, therefore, are not able to give any infor-
mation about the anisotropy of the trajectory. We have estab-
lished an additional statistical function, C�0, t ,2t� �defined in
the text� that allows the determination of the anisotropy pa-
rameter �= �D� −D�� / �D� +D��. Therefore, when the
C�0, t ,2t� is combined with the MSD analysis, the three dif-
fusion coefficients �D�, D�, and Dr� can be determined. This
framework can be generalized to the three-dimensional case:
the mathematical structure of the Langevin equation is com-
mon to the two-dimensional case since the orientation of the
particle evolves separately from that of the position vector

X� t. Practically, however, the complexity of calculations is
higher in three dimensions because of the noncommutativity
of rotations of three-dimensional objects �20�.

From an experimental point of view, the accuracy of the
determination of the diffusion coefficients depends on at
least three conditions.

First, in the method we propose, the determination of the
diffusion coefficients is based on statistical averages. We
have not calculated the statistical error, due to the finite num-
ber of analyzed trajectories. In order to estimate the number
of trajectories required to assess the diffusion coefficients,
we performed numerical simulations. �Temporal discretiza-
tion of Langevin equation introduces another type of error,
which is discussed in the Appendix C.� These simulations
indicate that a fairly good estimation of the parameters �see
Figs. 3 and 4� is obtained with only a few hundreds trajec-
tories analyzed on a time interval t� /2. Such a number of
trajectories can be experimentally obtained.

Second, if the orientation of a particle can be directly
accessed, the rotational diffusion coefficient can be indepe-
dently determined. This would facilitate the estimation of the
anisotropy parameter �, through, for example, the function

Ĉ�t� �see �6��. Recently, a method based on the analysis of
the light emission pattern of quantum dots �inorganic fluo-
rescent markers �6�� has been developed to observe their ori-
entation �21�. In another technique, two markers are attached
to the diffusing particle and their relative positions inform
about the orientation of the diffusing object �22�. The rota-
tional diffusion coefficient could also be estimated by meth-
ods measuring the average behavior of the particle, such as

time resolved fluorescence anisotropy measurements for in-
stance �23�.

Third, the spatial and temporal resolutions of the tech-
niques used for the observation of trajectories are of critical
importance: they should be higher than the characteristic
length and time, beyond which anisotropy is practically not
appreciable. Various experimental methods such as FRAP or
SPT allow determination of isotropic diffusion coefficients of
symmetric membrane proteins. Based on these values, we
estimate the order of magnitude of anisotropic diffusion co-
efficients of asymmetric membrane proteins. The character-
istic length and time would be �1 nm and �10 �s, tak-
ing D� =0.2 �m2/s �for membrane proteins in model bilayers
�10��, D� /D�=2 �representative ratio for 3D Brownian mo-
tion in Newtonian fluids, which depends on the properties of
the environment and on the particle geometry �11��, and Dr
=105 s−1 �24�. The spatio-temporal resolutions compatible
with these characteristic parameters are beginning to be
available �25–27�.

Below, we discuss the relevance of this study for the dif-
fusion of proteins in membranes of living cells.

The model we have presented is valid for particles diffus-
ing in a homogeneous isotropic environment. This is not the
case at all scales for biological membranes of living cells.
The cell membrane �i� contains various membrane proteins
that can either act as traps by transiently immobilizing the
diffusing particle or as obstacles by hindering its diffusion
�25�, �ii� contains lipid microdomains, the size of which can
range from tens to hundreds of nanometers �28�, and �iii� is
further compartmentalized with domains as large as a few
hundreds nanometers in diameter �25�. This latter compart-
mentalization results from the existence of corrals formed by
membrane proteins anchored to a submembranous cytoskel-
eton network. This membrane organization should be consid-
ered in a context where proteins diffuse and lipid rafts have a
finite lifetime. This heterogeneity, whether structured or not,
dynamic or not, is likely to affect the diffusion of proteins in
the membrane. This heterogeneity can be quantified by a
characteristic length below which the membrane is homoge-
neous and does not contain any obstacle and/or trap for the
diffusing protein. The motion of a protein diffusing over
such a distance should therefore remain unaffected by mem-
brane heterogeneity. The anisotropic motion we have de-
scribed in this study therefore might be visible in small ho-
mogeneous patches of membranes, i.e., when the observation
length scale is small compared to the heterogeneity charac-
teristic length. By contrast, when the protein diffuses over
larger distances, its motion will be influenced by interactions
with other proteins. Its behavior is expected to deviate from
that of proteins diffusing in a homogeneous environment.
Modifications of the membrane heterogeneity, for instance
by altering the lipid composition or disrupting the actin cy-
toskeleton responsible for the membrane compartmentaliza-
tion �25�, will then help interpret deviation from the homo-
geneous membrane model. In addition, simulations of
diffusion in crowded environments can also be performed
and then compared with experimental data, as has already
been done for isotropic particles �25,29�. Preceding simula-
tions �30,31� have shown that the motion of a rod diffusing
in an environment that contains fixed obstacles becomes
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non-Brownian for a high density of obstacles �that is when
the observation length becomes large compared to the het-
erogeneity characteristic length�. Incorporation of the envi-
ronment heterogeneity and structure into the diffusion model
therefore is one of the future tasks to be challenged.

Beyond investigation of the membrane organization, ob-
serving the diffusive behavior of membrane proteins could
provide a tool for studying interactions between proteins.
Protein motion depends on the shape of the protein and es-
pecially, as we have shown here, on its anisotropy. Any
change in the shape of the diffusing object will then reflect in
its trajectory. Proteins can transiently form asymmetric com-
plexes with some of their partners. In some cases, complex
formation is induced by a ligand. For instance, tyrosin kinase
receptors dimerize in response to ligand binding �32�. A
change in the diffusion properties as described above will
reflect interaction of the protein with the signalling partner.
In other cases, complex formation is required for a protein to
participate in specific cellular processes. For example, the
membrane protein syntaxin binds to another protein SNAP25
to form an asymmetric complex which is involved in vesicle
exocytosis �33�. In both cases, analysis of trajectories will
give access to the duration of molecular interactions, thereby
providing complementary data to those obtained by observ-
ing the average behavior of molecules.

Note added. A few days before submitting the present
paper a report was published, dealing with the two-
dimensional diffusion of an ellipsoid �34�. The authors
solved the Langevin equation, as we did, and they analyzed
some statistical quantities at a given time point, such as the
second and fourth moments of the displacement of the center
of diffusion of the particle.

In our approach, we show how the deviation from the
Gaussian behavior can be evidenced by the trajectory of a
pointlike marker attached to the diffusing particle at an un-
known position. In particular we demonstrate that �1� the
diffusion coefficients �D� ,D� ,Dr� can be deduced from the
trajectories of the pointlike marker and �2� a few hundred
trajectories allows a good estimation of these parameters.
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APPENDIX A: LANGEVIN EQUATION
AND ITS ANALYTICAL SOLUTION

The Langevin equation for the center of diffusion ��1� in
the text� can be written in the nondimensionalized matrix
form

dX� t
�0�

dt
= ��2�1 + ��1/2ûtût + �2�1 − ��1/2�1 − ûtût�� · �� t,

�A1�

d�t

dt
= �2�t, �A2�

where the length and time units are � and �, respectively, and
ût= �cos �t , sin �t�T is the unit vector oriented in the longitu-
dinal axis of diffusion associated to D�. In polar coordinates,
�x ,y�=r�cos  , sin �, the corresponding Fokker-Planck
equation for the probability density, P= P�r , ,� ; t� writes as
follows:

�P

�t
= �� · ��1 + ��û���û��� + �1 − ���1 − û���û����� · �

+
�2

��2�P , �A3�

where �= �� /�x ,� /�y�T, and û���= �cos � , sin ��T. The
above Langevin equation can be integrated analytically, be-
cause the orientational degree of freedom ût evolves inde-
pendently of the translational ones. This is also the case in
three dimensions. We may simplify the calculation by intro-
ducing the complex notations: Xt

�0�=Xt
�0�+ iYt

�0� and Xt=Xt
�0�

+�ei�t for X� t
�0� and X� t ��=d / � �, respectively, and dBt

=dBx,t+ idBy,t for �t
t+dt�� sds. Here Bt with B0�0 is then a

complex Wiener process, satisfying dBs
*dBs=2ds �35�. �z* is

the complex conjugate of z.� By introducing also a real
Wiener process Wt through dWt=�t

t+dt�sds, the equations
�A1� are solved,

Xt
�0� = aBt + be2i�0�

0

t

e2i�2WsdBs
*, �A4�

where a= �1+��1/2 /�2+ �1−��1/2 /�2 and b= �1+��1/2 /�2
− �1−��1/2 /�2. The position of the marker is given by

Xt = Xt
�0� + �ei�0ei�2Wt. �A5�

In order to derive the various statistical averages, we used

the formula Q� ·R� =Re�Q*R� that holds for any Q=Qx+ iQy,
etc. For example, ût� · ût=Re�e−i�2Wt�,t� and the property of the
Gaussian stochastic process �35� yields 	Re�e−i�2�Wt�−Wt��

=e−�t�−t�. The calculation can be further simplified when the
result does not depend on the initial angle, �0. For instance,

in the calculation of 	�X� t
�0� · ût�2
 of �B2�, all the terms con-

taining the multiplicative factor ein�0�n�0� can be ignored.

APPENDIX B: ANALYTICAL RESULTS
OF STOCHASTIC AVERAGES

In nondimensionalized units, the MSD is

	�X� t − X� 0�2
 = 4t + 2�2�1 − e−t� . �B1�

There is no sign of the diffusion anisotropy, �. At short time
�t�1�, the MSD is the sum of the two-dimensional MSD of
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the center of diffusion �4t� and a term resulting from the
displacement of the marker due to the rotation of the particle
�2�2t�. At long time �t�1� only the former contributes to the
growth of the MSD, while the additive constant 2�2 reflects
the independent angles of the particle, �0 and �t.

The diffusion anisotropy is revealed in the statistical

quantities Ĉ�t� and C�0, t , t��, which reflect the translation-
rotation coupling and are calculated as

Ĉ�t� � 2	�X� t
�0� · ût�2
	�X� t

�0��2
−1 − 1

= ��4t�−1�1 − e−4t� , �B2�

C�t�,t,0� � 2	��X� t − X� 0� · �X� t� − X� t��2
 − 	�X� t − X� 0�2�X� t� − X� t�2


= ���1 − e−4�t�−t�� + �2�1 − 2e−�t�−t� + e−4�t�−t���

����1 − e−4t� + �2�1 − 2e−t + e−4t�� . �B3�

At small time t�1, the average C�0, t ,2t� increases as
16��−�2 /2�2t2, and finally tends to a constant, C�0, t , t��
���+�2�2 at t�1 and �t�− t��1. We note that the follow-
ing simple relationship holds:

	�X� t − X� 0�2�X� t� − X� t�2
 = 	�X� t − X� 0�2
	�X� t� − X� t�2
 , �B4�

which is not evident knowing that the displacement vectors

X� t−X� 0 and X� t�−X� t are correlated through the orientation of
the object at time t.

The effect of anisotropy also appears in the fourth order
moment of the displacement,

	�X� t − X� 0�4
 = 32t2 + 32�2t�1 − e−t� + �4�6 − 8e−t + 2e−4t�

+ �2�1 − e−4t�2 + 4�2��1 − e−4t − 4te−t� .

�B5�

This shows the non-Gaussian nature of the displacement,

X� t−X� 0: even with �=0 the equality of the two-dimensional

random walk, 	�X� t−X� 0�4
=2	�X� t−X� 0�2
2, is not recovered.

APPENDIX C: NUMERICAL METHOD FOR SIMULATING
LANGEVIN EQUATION

We have used the Heun’s method, which is an improved
version of the second order Runge-Kutta method. With a
given nondimensionalized time step 	t, the update of the

present position, X� n	t, and that of the angle, �n	t, at the
discretized time n	t �n�0� are, respectively, given as fol-
lows:

X� �n+1�	t = X� n	t +
1

2
�M�n+1�	t + Mn	t� · 	Bn+1,

��n+1�	t = �n	t + �2	Wn+1, �C1�

where Mt is the 2�2 matrix defined as

Mt = �2�1 + ��1/2ûtût + �2�1 − ��1/2�1 − ûtût� , �C2�

and �	B1 ,	B2 , . . . , � and �	W1 ,	W2 , . . . � are the indepen-
dent Gaussian random numbers obeying the standard normal
distributions, i.e., 		Bn
=0 and 		Bn

2
=1, etc.
In the Heun’s scheme, the truncation error due to the tem-

poral discretization of the Langevin equation varies as n−2 at
each time step, where n is the number of divisions of a given
time interval t of calculation �i.e., 	t= t /n�. This method,
therefore, results in a maximum error of n−1 through the
entire interval �see, for example, Ref. �36��. For the time
span of t� /2, the time step of 	t�� /600 was sufficient for
the purpose of distinguishing different values of the aniso-
tropy parameter, � �see the figures in the text�.
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